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SUMMARY

Formal transport theory is used to derive expressions for

the isothermal conductivity, Hall conductivity, and magnetocon-

ductivity of semiconductors with anisotropic multivalley band
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Notation

Vectors of any dimension are boldface (al in matrix notation and have a single subscript ('qi) in

tensor notation. Second rank tensors (Aij) are written as square matrices and appear in sans-serif

typeface (A). A dot between two quantities written in matrix notation corresponds to contraction on

one index in tensor notation. Where confusion may arise in transferring from one notation to another,

a matrix in the form A is written in tensor notation as {A_ .
l]

A list of symbols used in this report follows.

the symbol first appears.

The number refers to the equation (page) where

A coordinate transformation matrix 42

a dimensionless function of _k and 1! 61

c speed of light 3

c, c 1 , c 2 elements of isotropic fourth rank tensor 53

_i integral over surface of constant "_k 14

DIH) denominator of energy integral for large H 19

_k energy of electron with wave number k 1

e absolute value of electronic charge 3

E electric field strength 3

F (n) I_,:k ) energy factor in transport integral 60

f, f0 perturbed and equilibrium electron distribution functions 3

It magnetic field 3

Planck's constant + 2_- i

I electric current 49

f unit matrix 9

,_(') transport integral for small H 17

j current density I0

k,, k electron wave vector i

}((_)(H) transport integral for large II 22

l relaxation time proportionality constant 2

m_ component of effective mass tensor corresponding to direction k, in
1

m 7

N 50

17

standard orientation

effective mass tensor

number of valleys in polycrystalline material

constant factor in transport integrals

V
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area vector of plane through a sample of polycrystalline material

area vector of a single crystal sliced by plane S

velocity of electron with wave vector k
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relaxation time energy exponent

determinant of m : m1 m 2 m 3

kronecker delta symbol
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conductivity tensor

conductivity tensor averaged over orientation
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Euler angle
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GALVANOMAGNETIC EFFECTS IN POLYCRYSTALLINE

MANY VALLEY SEMICONDUCTORS

by

John H. Marburger, III

Goddard Space Flight Center

INTRODUCTION

The many valley model of the energy band structure of semiconductors has proved to be a fruitful

and illuminating concept in the explanation of electron transport phenomena. Recently it has been

shown that in addition to germanium and silicon, for which the model was originally developed, a

number of other semiconductors of current technical importance exhibit a many valley band structure.*

Present treatments of the theory of transport phenomena for these substances are principally con-

cerned with the results for single crystal specimens. Indeed, it was through the measurement of

single crystal properties that the failure of the spherically symmetric theory first became evident.

Nevertheless, it is of some interest to determine how the parameters characterizing the single crystal

case reveal themselves in measurements on polycrystalline samples.

We would expect a sample to show isotropic symmetry, as in the spherically symmetric case, but

in place of the conventional scalar effective mass we would expect to find combinations of the "longi-

tudinal" and "transverse" effective masses which characterize a single valley. Just what combinations

of these parameters appear and whether they appear in the same combinations in different transport

phenomena are to be determined by direct appeal to the general theory.

What follows are a review of the mathematical techniques of the many valley theory and an analysis

of the manner in which the theory yields results for polycrystalline materials. The first part is a re-

view of the methods of solving the Boltzmann transport equation for a single valley. The second sec-

tion is a detailed discussion of the mathematical problem of describing real materials in terms of the

single valley parameters.

Most of this material may be found in the references. An attempt is made here to simplify the

treatment and provide a straightforward and self-contained presentation of the theory of the isothermal

galvanomagnetic effects for polycrystalline many valley semiconductors. The development for the case

of strong magnetic fields has not been given elsewhere.

*See discussion group sections of Reference i, and references cited in Reference 2.



THEORY FOR A SINGLE VALLEY

The Model

The postulates for the simple many valley model were formulated in 1954 by Abeles and Meiboom

and by Snibuya (References 3 and 4). In this model the surfaces of constant energy in crystal momen-

tum space (k space) are assumed to be ellipsoids of the form

where m, is the component of the effective mass tensor in the direction of k,. It is evident that one

valley of this form will not in general possess the symmetry of the crystal. To achieve this symmetr:

a set of such valleys in the Brillouin zone must be postulated, arranged so that the sum of the proper-

ties of the minima will exhibit the symmetry of the crystal. In many cases several such sets may

satisfy the symmetry requirements. Herring has pointed out that such surfaces may be complicated

by degeneracy (Reference 5), but, since there are sufficient cases of interest in which it is not im-

portant, this complication will not be discussed here. Neither will the possibility of an anisotropic

r,laxalion lime be discussed. However the relaxation time will depend on an arbitrary power of

energy _7,k. Thus

where _ and ,_ are independent of energy (but perhaps dependent on temperature). Finally, we shall

ignore any contribution to T arising from the scattering of electrons between different valleys (inlet'-

valley scattering) and focus attention on the processes taking place in a single valley (iJN_'avallc3,

scattering). This simplification allows the representation of the properties of a real materialas a sun _

over the properties of a single valley. For a discussion of the effect of these approximations on the

final results, see the excellent articles by Herring (Reference 5) and Herring and Vogt (Reference 6).

Solution of the Transport Equation

This section will consider methods of solving the isothermal Boltzmann transport equation for th,

electron distribution function f:

-°I '( )l

E and it are the electric and magnetic field strengths, vk is the velocity of an electron with energy _:'k'

and - e is the electronic charge. Following the conventional approach, let

8f0
f = fo - q_(k', -:;-6-- ,

_G (4)



Substitutionof Equation 4 into Equation 3 yieldswhere f0 is the Fermi-Dirac distribution function.

-erI_ h 1 ;¢Ikl - -h E" vk + gH" v k× Vu¢(kl , (5)

where a term of the order E • Vk V<k) has been neglected and the relation Vk gk -h Vk has been used to

simplify the expression.

The form of Equation 5 suggests an iterative method of solution for small values of H. If the term

in H is ignored, the "zeroth order" approximation is

¢(°)(k) .... ere • vk , (6)

which, substituted into Equation 5, gives

-er(. h "her )¢('):kl - _ E' vk---7- tl" vk× m-' .E • (7)

The relation"h 2 m-z = Vk Vk gk has been used; m-z is the inverse effective mass tensor. In that which

follows it will be assumed that, for the single valley under consideration, the coordinate axes in k space

lie along the principal axes of the ellipsoid. This will be the stazMard orientation. Higher order ap-

proximations are obtained similarly. For example,

- e_F _e7 m_1
¢(2)(k) - _ k_ E" vk---7- H" vk× • E

+_ H'VkXV k H. Vk:<m-t "E .
c 2

(8)

Higher approximations than this need not be computed if the magnetic field is sufficiently weak.

Although it is not obvious from Equations 6-8, the series solution given by this technique can be

expressed in a closed form. Wilson shows for the isotropic case (m-' a scalar) how this form may be

obtained by direct solution of Equation 5 (Reference 7, page 210). The procedure when m-1 is a tensor

is not significantly different and leads to the exact form:

-,_rv k " E---c m-1 "E ×H+ _m'HtE'H)

¢!kl ' (9)

1 + _-H " m " H

where k : det m, and m • m-' - m-' • m - I , the unit tensor. Equation 9 must be used to compute

transport properties when strong magnetic fields are present. Unfortunately the appearance of m in

the denominator of this form causes a vast complication. For this reason most discussions of the

galvanomagnetie effects concentrate on Equation 8, which is only applicable in the limit of low fields.



Anothermethodof solvingEquation5hasbeenemployedbya numberof workers.* This approach
involvestransformingto a coordinatesystemin whichthethree independentcomponentsof theeffec-
tive masstensorare equal. Thetransformedequationmaythenbesolvedas in thesphericallysym-
metric caseandthe solutiontransformedback to the original anisotropicsystem. This procedure
side-stepssomecomputationalwork, but the results are the sameas for the methodspreviously
described. In thenextsectionthis transformationwill be usedto simplify the transport integrals.

Anapproachentirely different from that outlinedhere is discussedby McClure (Reference9).
Althoughhis treatmentis moregeneral,it hardlylends itself to practical computationsof the sort
performedhere.

Conductivity for a Single Valley

Now we shall consider in some detail the result of substituting the expression for ¢(k)from Equa-

tion 8 or 9 into the integral defining the electric current density J :

°fJ : --_ v k f dak

= ---2-e f Ofo4_ a vkO(k) _ dak ' (10)

where d3k denotes a volume element in crystal momentum space. The integration is to be taken over

all space. Evidently this substitution will lead to quite different forms depending on whether Equation

8 or 9 is used, although for weak magnetic fields they should give the same results. Each form re-

quires special treatment.

Case 1--Weak Magnetic Fields

By writing out Equation 8 in component form and simplifying, the entire expression becomes

-eT@ "hez • (rn-1 • E)x it¢(2)(k) - --ff E • vk ----_ vk

+ -- _- v k

where ,_ = mlrn2m3 and I is the three-dimensional unit matrix.

(11)

*References 2 and 6 are representative. Reference 8 also includes a discussion of this technique.



Substituting this into Equation I0 yields

_,2f /,fo ,,3 f
,J 4_f3 't vk v k " E ,)('_- d3k + .....4.'3c , 2 vk vk .

of o
(IJ m_') • I':_ ,Pk

• _t_'k

f '9 f !1
0 4 1 3 Vk 'k [(m " ||)|] - ':|]' m ' H)I ] " E _-- (_3k (12)

4_,3 c 2 m "k

Now recall that'hk m • v k . Since the region of integration includes all directions and magnitudes of

k, all integrals in Equation 12 containing a product v, v ,:i / will vanish. The remaining integrals

each contain a factor v, 2 1_2 k 2/m 2 (i 1, 2, 3). A further simplification results from the relationt ' i

d3k
dS d_ k

I':k ¢::ui (13)

where dS is an element of area on a surface of constant ('k in k space. This allows us to cast all de-

pendence on k into a single factor common to all the integrals of Equation 12:

ff k i2J"i _;k ,.tS . (14)

Here the integrals extend over a surface of constant t:k These integrals are evaluated most conven-

iently in a coordinate system in which the surfaces of constant energy are spherical. Denote the new

coordinates by w ; then such surfaces nmst have the form

z;k _:', _- ,_,12 _ _2 2 4 w --_- w 2

Comparison with Equation 1 shows that

Thus

W
i

But

dak
rnl m2 n_3)12 d3w

':1/2 dS d(, ,',1 2 dS :t,.t:

I";- ;_ i "h2w

(IS w 2 d.] d(cos.:')



where :' and ,'_ are the polar angles corresponding to 4. Therefore

f_l fo _: ,I 2 mi v, i2 w d/ d( cos i'?i : -hs
1

: -hsl 83 ]/2 7mi /1 2 (,k3 2
(15

With these simplifications Equation 12 becomes

If[ c?f° 1
2de2 ....1,2 _- dC'k m-1 ' E
3r,2-h 3 .... (_k3'2 (?_"k /

i 3,'2"h 3 c" '1'2 ' d_:_- '](_k ,m " H::

2}/2e 4 1 . 3 _\k3 2 _Jf0
3,_,2-h 3 C2 a(,_ r!_\k [t111 m

I1" m" ii I] [ .
(16

The following abbreviations are useful:

2dp 2
i!( ' 1 2

3,: 2--h 3

j ( n ) .)_ f' ,,,(.k3 2 _ifo
_,_ 't('k 'Oo (17

In this notation

e 1
- ;I(l)m -1 " E _ c _ :i<2) m'll - i(

c 2 1 j!3) [|llt_m 1 . II' m ' It;I]
c 2

• E ,
(18

the explicit form of the conductivity tensor for a single valley in a weak magnetic field.



Case 2--Strong Magnetic f'ields

Substitution of Equation 9 into Equation 10 yields

02 (T Vk Vk ' E 0f o

4r,3J D(H) a(; k dak

e 2 err 2J v k v k • It × m -1 • E Ofo_ 4_ 3 D<H) ag k
d3k

e 2 2 1 f r3 Vk Vk ' m • It (tl • E) 0f o

4-r' (_-) _J D]lt] O&--7d3k '

where

(19)

( 21D,:H! I _ 7 Ill.re. Ill . (20)

All the arguments used in simplifying Equation 12 are also valid in the strong field case, the simplified

form of Equation 19 being

fi 1 .k(2 )J : -k(l)(tl m-I E _ c _ (!1) (m'tl _ [ (21)

where
oF:-) hla)/H !1(I1' Ei

1

fo x` "rn _Zk3,,'20foIk(_){ R) - ')( Dill) O_:'k dt]'k ' (22)

This form differs notably from Equation 18 only in the last term, where all the orientation dependence

is contained in the integral k (3) (!11.

EXTENSION OF THE THEORY TO MANY VALLEYS

Theory for a Single Crystal

In discussing the model it was observed that, for a model based on anisotropy in the energy band

minima to exhibit the symmetry of a real crystal, there must be several such minima distributed ac-

cording to that symmetry. The properties of the crystal itself will be sums of the properties of dif-

ferently oriented valleys. This section will discuss the techniques of transforming the results for a

minimum of standard orientation into those for minima oriented in other arbitrary directions.



Equations 18 and 21 can be written ill the abbreviated form

J a!ll:: • E , (23)

where the components of the second rank tensor o!i1! may depend on II. The elements of o!ltl, may be

determined from Equations 18 and 21 by inspection. Equation 23 shows that the problem of finding the

relation between J and E for various orientations of a valley reduces to the problem of finding how

a!|l) changes under a rotation of the coordinate system. Thus, if there are N equivalent valleys in the

Brillouin zone symmetrically disposed about an axis, the conductivity for a single crystal will be

N

ai'll_ Z _'t'_:]ll:_ " (24)
1 1

The tensors =('),:it: all transform into one another when the coordinate system is rotated through a

multiple of N radians about the axis of synunetry. The treatment is analogous for other types of

symmetry.

Ifo':ll) were a true tensor, a °'::ll:'could be fore]din some rotated system merely by applying the

transformation a defined by

,,, A . , , (25)

where x' and x are vectors in the transformed and untransformed spaces, respectively.* For the cor-

responding second rank tensor transformation, in matrix notation,

o' A • a " A 1 (26)

If, however, ,,(1t! is inserted into Equation 26, a new tensor is found in which the magnetic field !t has

been rotated with the coordinate system. Consequently, Equation 26 does not preserve the angle be-

tween E and il and requires modification. Actually all that is necessary is the application of an in-

verse transformation to II in the transformed tensor. Thus,

is the correct expression.

In the case of weak magnetic fields the elements of a!lI; depend on It in a simple way, and it is

possible to streamline the treatment. For strong magnetic fields, however, the dependence of the

integrals k _'_ II, on II defies simplification. Both cases will now be treated in detail.

*See any textbook on mechanics, Reference 10 for example.



Case I--IVeal: MaAn_clic Fic/ds

Equation 18 shows that, for weak magnetic fields, aIll_ may be expressed as the sum of three

tensors:

•', Z, ±,,k 2 ..'(/)Ej _ '(12)ttjEk * ':' (j_lI;HiltkE

J Jk Jk_

Notice that in this form the =,'s have no dependence on tl. This makes it possible to treat them in the

silnplified manner of Equation 26 rather than that of Equation 27. Since only one of the tensors is of

second rank, matrix notation is no longer convenient. In tensor notation Equation 26 becomes

"!,j _ AikAj_'k_ " (29)
k_

Similar expressions hold for :,,i_ and _,,k_ " From Equation 18,

,_ (l)
lJ _ , (3o)

(22)

ijk
'}--he :_(2) { a {m)
/ ,c ' _ i_k _i ' (31)

/

(III)

iik • _:',k;: ' (32)

where ; ,jk is the permutation symbol defined by

ijk

0 (any two subscripts equal),

1 (any even permutation of subscripts),

1 (any odd permutation of subscripts).

The fourth rank tensor _i,_ikc will be discussed after some refinements in nolation have been introduced.

Applying Equation 29 to Equations 30 and 31 shows

_7(I)', .q(2) ZA,kAi,: (m ')k,: " (33)

k_

'_ ,jb_(II)' C(--2"l[>.._{(21 _ Ai i:Aim Ak,,
,,im n

i m i:
_:p,, pm (34)



Since Aik -- ( A-1)kt , the first of these may be written in matrix notation as

o([)' = _ _(1) A • m-I • A-I

: - _<,>(m-,)' (35)

The second becomes

(7 (II)_ e 1 Eijk : C_ _(2) Ai_ _}pn (m)pm(A-1)mj (A-l)nk ' (36)
_mn

If we multiply this into Hj +and contract, we can write in matrix language,

+1 [( ]o(,z)'(H) = _-_._](2>A • re'A-' "H)x • A-I

: , •[°'">(,-'..)].,-' (37)

in agreement with Equation 27.

To write down an expression for _ijk_ in Equation 32, consider it a transformation of the dyadic

[] H rather than of the vector H(H • E). Since H H is a symmetric tensor, the notation of elasticity

theory* may be used to write it as a six-dimensional vector:

HH'-'_ (H 1 H 1 , H2H 2 , H3H 3 , H2H 3, H3H l , H l H2) • (38)

Then _ijkzmay be written as a square six-dimensional matrix:

: J (B -1) (.) , (39)

where I is the six-dimensional unit matrix and (m-') (,,,) is not a matrix product but a dyadic formed

from 2 six-dimensional vectors (three components of which vanish, since m and m-1 are diagonal in

"See any discussion of elasticity theory, for example Reference I1 or 12.

10



this coordinate system). Thus

J

0

nl I

m 2

m I

m 3

rTl 2 m 3

0
m! m 1

m 3

0 --- 0
m 2

n_ 2

0 0

0 0 1

0 0 0

0 0 0

0 0

0 0

0 0

0 0

1 0

0 1

(4O)

Evidently fl is not symmetric. Although this notation makes it possible to write the fourth rank tensor

in matrix form, it is not particularly useful for calculations. The transformation of a fourth rank ten-

sor is analogous to Equation 29:

_m.p / , As_AmiA,i Apk_%Lik " (41)

hLjk

Hearmon gives a table of these coefficients for the case ofa syu_metric fourth rank tensor (Reference

13). A similar table for the nonsymmetric case would be much longer but would contain no new com-

binations. In any case, it is not difficult to deduce such a table from Equation 41.

With the help of Equations 33, 34, and 41 expressions for:,/_, ',jk/rI), and ,,ik_rr_in Equation28 may

be found which are valid for any orientation of the coordinate system. The particular form of the

transformation matrix A is arbitrary, but one alternative is:

A

CO S ',I_' COS f -- CO S I sin ,' S i I_ I_ I

I S _ [_ [_I cOS Z I CO S S i [_ / _ 0 S I

_iYi_' sin /

C() S l,l_ ' S i II J _ COS ('O S : sin . Ill

I s i[_ _/II S i 1_ f _ CO s ('O S t ('O S _fi

- sin ' cos,,

Sill; sill' 1

cos /' sin

COS '

(42)

Figure 1 depicts the choice of angles (the Euler angles) for this form.

It is still necessary to find the particular transformations which carry the standard valley into

all the others, perform the transformations, and sum to find the total conductive7. These computa-

tions rely on the particular symmetry of the crystal and will not be performed here. It should be

mentioned that in many cases more than one distribution of valleys may satisfy the symmetry require-

ments. Drabble and Wolfe give a treatment similar to the one here, but modified to show explicitly

the separate roles of crystal symmetry and choice of distribution (Reference 14). The present treat-

ment. however, is more appropriate for the averaging process to be discussed later.

11



Table 1 lists references in which explicit calculations have been carried out for particular models

and particular crystal symmetries. In cases for which the computations have not been performed,

simply determine A and follow the procedure outlined here or that in Reference 14.

Case 2--Strong Magnetic Fields

In analogy with Equation 28, Equation 21 may be rewritten:

j jk jk_

where

[°-(I)(H)]i, = -- K('>Ilt)(m-l) ij ' (44)

: V_1/_e_ _ j_(2)(lt ) (rn

$

(46)

BODYAXIS

LINE OF NODES

x t, Xtt

Figure ]--Definitlon of the Euler angles ¢, 6_, and _.

Table 1

References for Explicit Calculations of
Magnetoconductlvity Coefficients

for Single Crystals.

Crysta I Mode I
Symmetry j

Cubic

(m3m)

Trigonal

6 ellipsoids, m1 = m 2 J m 3

12 ellipsoids, m1 = rn2 J m3

8 ellipsoids, m] = rn2 _m 3

1 ellipsoid, rn] = m2 _ m3

3 ellipsoids, m1 ?_m2 _m 3

6 ellipsoids, rn1 /m 2 _'m 3

Refer-

ences

3, 4

4

3, 4

15

15

14

12



Notice that the complicated fourth rank tensor ',:', j_:

form :, _ This transforms quite simply:
_ i j _k _ "

of the weak field case has been replaced by the

I Z_:,_,, i',jk Ah: Ai,,_ A Akl ' ':':m "'np

i mnp

A,,:(A1):, 'L,, (A '),,_
,! N

"l,i "ik (47)

Transforming any of the tensors in Equation 44-46 yields Equation 33, 34, or 47 multiplied by a fac-

tor containing

where

'_ r) f 0

T n _,_k 3 '2 )"--':_"
f t_ k

],("'(A I "11) _)_ d_,\ k , (48)

0

Notice that

(A'-.) .-(A'..) _, ,ml (A') ._(A 1)', H ik k:

,jk_

Z tt A i ira:' k (A 1) H1 k" }

,jk_

It" (A" m" A 1)" H

II • rn' H ,

as might have been expected. In actual calculations the integrals of Equation 48 must be evaluated

with a computer. The integrals for different ellipsoids will differ only in the constant term in the de-

nominator. Aside from this complication, the procedure used here is exactly analogous to that used

for the case of weak magnetic fields.

13



Theory for Polycrystalline Materials

As the name implies, a polycrystalline material consists of a large number of distinct single

crystals. This section is a discussion of properties of such materials when the individual crystals

are randomly oriented. Without this assumption the theory is prohibitively complex.

If the crystals are randomly oriented, the material will not exhibit direction-dependent properties.

In this case the material is said to be quasi isolropic because, even though the constituent crystals

may be anisotropic, a large sample possesses isotropic symmetry. The procedure adopted here for

calculating the tensor properties of a quasi isotropic substance has been described by Voight for

elastic properties (Reference 11). Keyes has applied this procedure to the conductivities in the

presence of a weak magnetic field (Reference 16). His results will be derived for case 1 and the treat-

ment extended to the strong field, case 2.

The total current flowing through an imaginary plane of area S in the material must be the sum

of the contributions from each of the crystals cut by the plane. If the area of the i th "sliced" crystal

is s i, then the total current through the plane is

I : 2 s i" ai " Ei (49)
1

where Isit : _i" The vector si/Isil is normal to the area element s i. E i and °ib°th refer to the

i th crystal. From this expression it can be seen that the size of the crystals must not be correlated

with their orientation. Obviously, if crystals with a special orientation tend to be larger than average,

their properties will dominate those of the entire material, spoiling the isotropic symmetry.

One further assumption is required for a manageable theory. Since Equation 49 gives no infor-

mation about Ei, it must be assumed to remain constant over the entire plane S. This is simpler than

the alternative assumption that J is constant over the cross section. In that case the conductivity

tensor for the crystal would have to be inverted and the resulting resistivity tensor summed. But

this requires detailed knowledge of the crystal symmetry and valley distribution. To sum the con-

ductivity tensor, we need only add the contributions of all the valleys throughout the material, which,

for random orientation, amounts to multiplying the orientation average of a single valley by the num-

ber of valleys. Certainly neither of these assertions is entirely realistic, and the alternative which

agrees best with experiment must be chosen. Keyes has discussed this problem and found that the

two alternatives do not give widely divergent results (Reference 16). Indeed, when the constituent

crystals have cubic symmetry the results are identical.

Thus Equation 49 may be rewritten as

I S" (_al)i E,

14



where,for a largenumberof crystals,

2 "_ 1 2w

a i'-_ 8r7---_ - 1 0
i

(50)

for random orientation of the individual crystals. N is the total number of valleys. Here advantage

is taken of the fact that the conductivity tensor for an arbitrary choice of a coordinate system is a

function of the elements of the rotation matrix A, which are in turn functions of the angles specifying

the rotation. In that which follows Equation 50 will be applied systematically to each of the expressions

for o Cit) derived previously.

Case 1--Weak Mag_elic Fields

In this case Equation 50 is applied directly to each of the tensors defined in Equation 28. The

computation is reduced considerably by taking advantage of the known symmetry of the quasi isotropic

material. In such a material the conductivity is a scalar and the Hall conductivity is proportional to

I! . E. Thus (a (I)) has the form _(_)iij(where _.,(_) is a scalar) and is completely determined by the

orientation average of a single diagonal element of o (_)'. From Equations 33 and 50

Z-'"'J,,)

,_(1

2"" 1 2r"

-- Ask Aa_ (m-l) k_ dCd(cos ' 1 d'4

877 2 - 1 0 k Z

--8w2 -1 0 sin2 /)sin2 V" + _22 sin2 _)c°s2 g'

_(1

:: ,r(I)

N _- _m2- + m 3

1 2)+ in" 7 cos _. d,_Sd(cos ())dg_

(51)

An entirely similar argument leads to:

(:(II)
= C 3 m 3 _ m3m 1 + "--- m, (52)

The average for _jkZ is found in precisely the same manner: Insert the expressions for the ele-

ments of the transformation matrix into Equation 41 and average over all orientations. Voight (Refer-

ence 11) has shown that a fourth rank tensor describing a property of an isotropic material must have
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theappearance:

m

c c 1 c 1 0 0 0

c 1 c c 1 0 0 0

c I c I c 0 0 0

0 0 0 c 2 0 0

0 0 0 0 c 2 0

0 0 0 0 0 c 2

(c Cl) in the notation used here.

The details will be omitted here:

where c 2

elements.

rank tensor, and Keyes has obtained a similar result for the nonsymmetric case (Reference 16).

the notation used here the appropriate averages are

(53)

Thus it is only necessary to compute averages for heo

Voight has done the computation for a symmetric fourth

In

:1111 - 15 m I ' m 2 ra 3 / b 5-- ,

(_ 2_ 2 (m2 ÷m3 ms _ml ml+mZl 1'112 l-S \ m I - + m2 + m 3 / 5- '

1 (m2 + mj

Keyes defines an anisotropy parameter

m3--' ml m] + m2 -1 3

+- m2 _ m3 / _ 5-.

J

(54)

7 1 (m2 +m3__ m3--+ml ml +m2 1 3
ml _ m2 i m3 /

,,r ]2ALm,(m -m2)2m2 (55)

in terms of which

2

()llll_ : - 1S -A ,

)232 : 1 + ]-_ A .

(56)
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Equations 51, 52, and 56 provide the averages which, substituted into Equation 28, give the conductiv-

ity, Hall conductivity, and mag3_etoconductivity appropriate for the quasi isotropic case. Thus

<. > (1 1 1 -m ,j
I ' I ,_(1) N X n_l- ' m 2- + "

o (II_ _!_(2t N m2m a " m3m!. + mlm 2 ':ijk'
i k

(O(IIli)ijk! ((_7)2 ,_ (3) N l_i jk ?_ •

(57)

Case 2--Strong MaL_nelie Fields

Equations 44-46 show that for a quasi isotropic material in a strong magnetic field the three con-

ductivity tensors are all scalars multiplied by one of the tensors ,* _, _,jk , or _,j _k_- Thus only one

integration per tensor is necessary to fix the entire average expression. Accordingly, the averages

of [,(I)(ltl]33, [,(II)(11)]123, and[,(IIr)(ltt]l,l I will be computed. First, however, it is necessary

to make two assumptions that simplify the computations considerably: Let the magnetic field point

along the positive z direction, 11 (0, 0, H3),and let the energy surfaces be ellipsoids of revolution,

m1 %. The latter assumption is no more than an artifice to ease the labor of computation, but

nevertheless it imposes a restriction on the generality of our model. It is not a serious limitation,

since in actual practice masses other than the transverse (m 1) and longitudinal (%) are rarely used

to characterize an anisotropic energy surface. Moreover, the symmetry of the crystal under con-

sideration requires that ml m2 if the z axis is one of rotational symmetry.

With this understood, we may write

N _ 'rck3 ;2 0_ 1 1

([o_,) ill)] _) 8.7_ , _ ....,.m.,_ sin2_ ma cos _,_ <d._d_co.,_d_,. (58)

I 0 0

where

ll " m' • Ii : 1-t.t 2 (m I sin 2 ,_ +rn a cos 2 _,;) • (59)

With the substitution

fifo

: (60)
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Equation58maybe rewritten as

I
2_,.0 '_'":I=,+(m3 m,/x21

I® 1

F(l)(t;k) =I 1 tan-1

0

d_:;k dx

where

m77;I=3-m1
_H32 im3- =, !

a t=°l (,) m,_"=,tanh-1 _ d& k m3 < m1
(61)

= / 1 +o_H32=1
a

V

and x - cost). The functions tan -1 (l/a) and tanh -1 (l/a) are to be used for the eases % % and

=3 < =1, respectively. Evidently when m1 - ma this reduction is not possible. Then, however, all the

angular integrations in Equation 58 are trivial, and an energy integral remains which must be com-

puted numerically in any case. Equation 61 may be rewritten as

1( )_"(_k)_= ,+°,_._ tan-' =3>m,
_[ - 1 + tanh -1 dt_k =a < =1 " (62)°(I)(H)] aax_ : 1 +_:,H_ 2 m1 =awHa 2

0

Next compute

([ l,) °''I0 '_°(n)(H) 12 = c:58v2

F(2) (_k)I= I (sin2'_ +x2cos2_ 2) _m3 (1 x 2) cos2 _3]

tic k dr', dx de .

Performing the ¢ and ¢. integrations results in

<I I _>= °"a(II)(H)_ 12 c k_ 2

-I •

F(2)(_"ik) [(ml *=a)(m 3 =i) x2]

d_-_ k dx
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which is similar to the form for _aII)(lt)). Thus,

1.1I'F2' k'"I /g(II) _)]12 2 C _ 1 + .:_H32 mI ml +m3 +- _:H2 tanh-1 a d_'k m3 <m 1 .
*0

(63)

Finally,

2rr 1 2_rfm
_[O(III){H)]Illl) =-({)2 1 !fo[i8_2 f I F(a)(_k) d_'_kdCdxd¢'

= - _-2 1 F(3)(_,_k) a taD-1 (! d_.; k

1 + o-,H2ml tanh -l\a m 3 <m 1 • (64)

This expression, together with Equations 62 and 63, gives the form of the strong field conductivity

tensor _ (1t)) for polycrystalline materials:

Ji : 2 _a(X)(H))_ijEj _2 <a(rl)(ll)>"_,kHj gk * 2 _a(lZ11(H_ 5ij;k:Hj Hkg_" (65)
j jk jk].

This completes the extension of the strong field theory to polycrystalline materials.

CONCLUSION

This report has described, in as simple and straightforward a manner as possible, how the many

valley model of energy band structure gives results for polycrystalline materials. It must be empha-

sized that these results rely on the assumptions introduced at the beginning of the section on the

"Theory for Polycrystalline Materials" and care must be exercised in using them to interpret experi-

mental data. The method has the advantage that it requires no detailed knowledge of energy band

structure to obtain information about the anisotropy of the material. That such information can be

obtained from polycrystalline samples is a pleasant surprise, since the preparation of single crystals

is often a difficult and expensive task.

The energy integrals that arise in the strong field case in the section mentioned above require

further investigation. Their strong dependence on the effective mass ratio suggests that strong field

measurements on polycrystalline materials may yield valuable information on this parameter.
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ANNOTATEDBIBLIOGRAPHY

The following articles supplement the discussion given here. Only papers which discuss the

gaivanomagnetic effects have been included, but references to treatments of other crystal properties

may be found in these. Articles in the list of references which are not in this bibliography do not

contain extended discussions of the galvanomagnetic effects.

1. Wilson, A. H., "The Theory of Metals " (Reference 7). Section 8.51 gives a solution of the isotropic

Boltzmann equation for arbitrary magnetic fields, and section 8.55 gives the weak field expansion

for anisotropy in a single minimum in the energy band. No assumption is made concerning the shape

of the energy band, and the effective mass formalism is not used. The many valley theory had not

yet been formulated when this book was written.

2. Blatt, F. J., "Theory of Mobility of Electrons in Solids," in: Solid State Physics: Advances in Re-

search and Applications (Reference 8). Section IV of this review discusses nonspherical energy sur-

faces and anisotropic relaxation times. The treatment follows that of Wilson (Reference 7) and

Herring (Reference 5) very closely. A good discussion on solving the anisotropic Boltzmann equation

by transformation to a spherically symmetric system is included. The list of references in this

article is more extensive than in any other listed here.

3. Abeles, B., and Meiboom, S., "Theory of the Galvanomagnetic Effects in Germanium," Phys. Rev.

vol. 95, pp. 31-37 (Reference 3). This is one of the first papers to appear on the many valley model

and is the best treatment of the galvanomagnetic effects. The presentation is rigorous and almost

seN-contained, but extremely concise. Only here and in Shibuya's paper (Reference 4) is the strong

magnetic field case discussed in detail.

4. Shibuya, M., "Magnetoresistance Effect in Cubic Semiconductors with Spheroidal Energy Surfaces,"

Phys. Rev. vol. 95, pp. 1385-1393 (Reference 4). This paper appeared independently of the previous

article but treats essentially the same problems. Results are given here in somewhat more detail,

but the derivations are more abbreviated.

5. Herring, C., "Transport Properties of a Many-Valley Semiconductor," Bell System Tech. J., vol.

34, pp. 237-290 (Reference 5). A wealth of topics is discussed here: mobility (and its temperature

dependence for intervalley scattering), thermoelectric power, piezoresistance, Hall effect, high fre-

quency dielectric constant, and magnetoresistance. Approximate Maxwell-Boltzmann statistics are

employed throughout, and the notation differs considerably from that used here. The results for the

magnetoresistance are obscured by a complicated notation which nevertheless is useful for compari-

sons with observations.

6. Herring, C., and Vogt, E. "Transport and Deformation- Potential Theory for Many-Valley Semicon-

ductors with Anisotropic Scattering," Phys. Rev. vol. 101, pp. 944-961 (Reference 6). This report

includes a discussion of anisotropic relaxation time and extends deformation potential theory of

electron-phonon interaction to the anisotropic case.
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7. Drabble,J. R., andWolfe, R., "Anisotropic GalvanomagneticEffects in Semiconductors,"Proc.

Phys. Soc. Sectzo_ B vol. 69, pp. 1101-1108 (Reference 14). This paper shows the relation between

the components of the resistivity tensor and those of the conductivity tensor, and lists the explicit

evaluation of the energy integrals in the cases of weak and extreme degeneracy. A distinction be-

tween the model for valley distribution and the requirements of crystal symmetry is drawn to allow

use of the known group of symmetry transformations in computing the total conductivity for a single

crystal.

8. Keyes, R. W., "Isotropic Approximation to the Magnetoresistance of a Multivalley Semiconductor,"

Phys. Re_.,. vol. 109, pp. 43-46 (Reference 16). Keyes gives the averaging procedure for low field

conductivity, Hall conductivity, and magnetoconductivity and inverts to find the corresponding resistivi-

ties. A brief discussion of the validity of averaging techniques for the resistivity is found here. The

present paper follows the notation of this paper closely especially for case 1 in the section on the

"Theory for Polycrystalline Materials," where the treatment parallels that of Keyes. (Footnote 4 in

Keyes' paper should be "Adv. in Phys. Vol. 5, 323, 1956," instead of "Phil. Mag. Vol. 5. 323, 1956.")
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